Characterizations of A2 matrix power weights

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Characterizations of Riordan Arrays

Here we discuss two matrix characterizations of Riordan arrays, P -matrix characterization and A-matrix characterization. P -matrix is an extension of the Stieltjes matrix defined in [25] and the production matrix defined in [7]. By modifying the marked succession rule introduced in [18], a combinatorial interpretation of the P -matrix is given. The P -matrix characterizations of some subgroups...

متن کامل

Approximating power by weights

Determining the power distribution of the members of a shareholder meeting or a legislative committee is a well-known problem for many applications. In some cases it turns out that power is nearly proportional to relative voting weights, which is very beneficial for both theoretical considerations and practical computations with many members. We present quantitative approximation results with p...

متن کامل

Product distance matrix of a tree with matrix weights

Let T be a tree on n vertices and let the n− 1 edges e1, e2, . . . , en−1 have weights that are s× s matrices W1,W2, . . . ,Wn−1, respectively. For two vertices i, j, let the unique ordered path between i and j be pi,j = er1er2 . . . erk . Define the distance between i and j as the s × s matrix Ei,j = ∏k p=1Wep . Consider the ns × ns matrix D whose i, j-th block is the matrix Ei,j . We give a f...

متن کامل

Sparse Matrix Decompositions and Graph Characterizations

Zeros in positive definite correlation matrices arise frequently in probability and statistics, and are intimately related to the notion of stochastic independence. The question of when zeros (i.e., sparsity) in a positive definite matrix A are preserved in its Cholesky decomposition, and vice versa, was addressed by Paulsen et al. [19] [see Journal of Functional Analysis, 85, 151-178]. In part...

متن کامل

On matrix characterizations for propositional substructural logics

This paper provides a uniied approach for matrix characterizations for propositional substructural logics, whereby the focus is laid on a uniform representation of diierent validity concepts in matrices. Starting from a restricted validity concept for matrices called basic-validity, where a matrix is considered as valid if each literal is connected exactly once, we use rewrite rules to obtain a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2017

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2017.04.035